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Abstract

Rayleigh–Bénard convection is a fundamental phenomenon found in many atmospheric and industrial applications. Many numerical
methods have been applied to analyze this problem, including the lattice Boltzmann method (LBM), which has emerged as one of the
most powerful computational fluid dynamics (CFD) methods in recent years. Using a simple LB model with the Boussinesq approxima-
tion, this study investigates the 2D Rayleigh–Bénard problem from the threshold of the primary instability with a theoretical value of
critical Rayleigh number Rac ¼ 1707:76 to the regime near the flow bifurcation to the secondary instability. Since the fluid of LBM is
compressible, an appropriate velocity scale for natural convection, i.e. V �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgyDTH

p
, is carefully chosen at each value of the Prandtl

number to ensure that the simulations satisfy the incompressible condition. The simulation results show that periodic unsteady flows take
place at certain Prandtl numbers with an appropriate Rayleigh number. Furthermore, the Nusselt number is found to be relatively insen-
sitive to the Prandtl number in the current simulation ranges of 0:71 6 Pr 6 70 and Ra 6 105. Finally, the relationship between the Nus-
selt number and the Rayleigh number is also investigated.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to its practical importance in many general science
and engineering applications, Rayleigh–Bénard convection
has been the subject of many theoretical, experimental, and
numerical studies. Since Rayleigh–Bénard convection pre-
sents the evolution from the stationary state to the fully
developed turbulent regime with many different flow pat-
terns and sequences of bifurcations, it is widely investigated
as the problems of different transition mechanisms in
hydrodynamics [1–4].

In Rayleigh–Bénard convection, the primary instability,
which represents a transition from diffusive thermal con-
duction to stationary time-independent steady convection
with a structure of steady 2D rolls, occurs at a critical Ray-
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leigh number of Rac ¼ 1707:76 for the case of no-slip
boundary conditions imposed on solid walls. The value
of this critical Rayleigh number is independent of the Pra-
ndtl number. However, as the Rayleigh number increases, a
bifurcation to a time-dependent flow structure with a
single-frequency periodic state is observed, namely the
secondary instability. This transition to the secondary
instability is strongly dependent on the Prandtl number.
Moreover, as the Rayleigh number is increased further,
two-frequency quasi-periodic flow is generated from the
single-frequency oscillatory state and the flow finally
transits to a chaotic state in the fully developed turbu-
lent regime. Early experimental results for the transition
to turbulence in Rayleigh–Bénard convection were pre-
sented by Krishnamurti [5]. More recently, various
studies have employed numerical methods to investigate
the bifurcations to oscillatory flow in Rayleigh–Bénard
convection [6–10]. In these studies, the authors presented
numerical results for symmetry-breaking solutions of flow
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Nomenclature

ac critical wave number for primary instability in
Rayleigh–Bénard convection

AR aspect ratio
ci microscopic particle velocity in each lattice link i

cs speed of sound
f distribution function for the flow field
fD reference thermal diffusive frequency
fP induced oscillatory frequency
f � dimensionless frequency ratio
g distribution function for the temperature field
gy acceleration of gravity in the y-direction
H vertical height of the computational domain
_J i momentum input from the buoyant body force

in each lattice link i

L horizontal length of the computational domain
Nu Nusselt number
Nu average Nusselt number
Pr Prandtl number
r power value for the power law: Nu / Rar

Ra Rayleigh number
Rac critical Rayleigh number for primary instability

in Rayleigh–Bénard convection

T temperature
t macroscopic time
tD reference thermal diffusive time scale: tD ¼ H 2=a
tp time of period for the induced oscillatory flow
uA macroscopic flow velocities, where subindex A is

the components of Cartesian coordinates
V characteristic velocity of natural convection,

V �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgyDTH

p

Greek symbols
a thermal diffusivity
b expansion coefficient: b � �1=qrefðoq=oT ÞP
‘ length scale according to specific case of natural

convection problems
DT temperature difference
Dt time interval (step) of LBM
m kinetic viscosity
q fluid density
sD relaxation time for the temperature field
sv relaxation time for the flow field
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bifurcations and estimated the Rayleigh number for the
oscillatory flows occurring at Prandtl numbers of approxi-
mately Pr ¼ 6.

The kinetic-based lattice Boltzmann method (LBM) is a
powerful numerical technique for simulating fluid flows
and modeling the physics in fluids [11–15]. However, the
application of LBM to heat transfer problems has not
achieved great success for the thermal models due to the
severe numerical instability caused by breaking the isother-
mal condition [15]. Various numerical simulations have
been performed using different thermal LB models or
Boltzmann-based schemes to investigate 2D Rayleigh–
Bénard convection [16–19]. Although the results provided
by these studies for stationary convection are in good
agreement with the data presented in [2], the flow bifurca-
tion to the secondary instability at different Prandtl num-
bers was not examined and discussed by thermal LB
models.

The present study employs a simple thermal LB model
with the Boussinesq approximation to simulate the oscilla-
tory flows of the secondary instability in 2D Rayleigh–
Bénard convection. The present study also investigates
the structure of the oscillatory flow for this natural convec-
tion problem using the simple LB model. In this study, the
thermal LB model is simplified by neglecting the viscous
thermal dissipation for incompressible flows. However,
the compressibility of LB fluids must be taken into consid-
eration in the applications of compressible codes to the
incompressible limit, as reported in [16,17,20]. Therefore,
a correction procedure is applied to obtain an appropriate
characteristic velocity of natural convection, i.e.
V �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgyDTH

p
, for different Prandtl numbers to ensure

that the incompressible condition is satisfied. Furthermore,
the simulations are restricted to the Prandtl number range
of 0:71 6 Pr 6 70 and to the Rayleigh numbers of Ra 6 105

to ensure numerical stability and computational accuracy.
Having explored the oscillatory flows of the secondary
instability in 2D Rayleigh–Bénard convection, the relation-
ship between the Nusselt number and the Rayleigh number
is investigated for Prandtl numbers in the range of
0:71 6 Pr 6 70.

2. Numerical method

2.1. Lattice Boltzmann model

In investigating the natural convection problem, this
study neglects the viscous heat dissipation in applications
of incompressible flow such that a simple lattice Boltzmann
method can be used. The LB model comprises two distribu-
tion functions, f and g, for the flow filed and the tempera-
ture field, respectively. The density and the temperature
distribution functions, f and g, are defined as the probabil-
ity of particles at site x at time t moving with the particle
velocity ci during the time interval Dt in each lattice
direction (link) i. The same model was proposed in
[21,22]. The two distribution functions obey their respec-
tive lattice Boltzmann transport equations with the single
relaxation Bhatnagar–Gross–Krook (BGK) approxima-
tion, i.e.
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fiðxþ ciDt; t þ DtÞ � fiðx; tÞ ¼
Dt
sv

f eq
i ðx; tÞ � fiðx; tÞ½ � þ _J i

for the flow field ð1Þ

giðxþ ciDt; t þ DtÞ � giðx; tÞ ¼
Dt
sD

geq
i ðx; tÞ � giðx; tÞ½ �

for the temperature field ð2Þ

where _J i is the momentum input from the buoyant body
force, sv and sD are the relaxation time for flow and tem-
perature LB equations, respectively, and cs ¼ c=

ffiffiffi
3
p

is the
speed of sound. The kinetic viscosity m and the thermal
diffusivity a are given by their own relaxation time:
m ¼ c2

s ðsv � 1=2Þ and a ¼ c2
s ðsD � 1=2Þ. Furthermore, the

local equilibrium distributions are given by [23]

f eq
i ðx; tÞ ¼ wiq 1þ ciA � uA

c2
s

þ uAuB

2c2
s

ciAciB

c2
s

� dAB

� �� �

for the flow field ð3Þ

geq
i ðx; tÞ ¼ wih 1þ ciA � uA

c2
s

þ uAuB

2c2
s

ciAciB

c2
s

� dAB

� �� �

for the temperature field ð4Þ

In these expressions, the flow properties are defined as

Flowdensity : q ¼
X

i

fi ð5Þ

Momentumflux : quA ¼
X

iA

ficiA ð6Þ

Temperature ðor concentrationÞ population : h ¼
X

i

gi

ð7Þ

The subindices A and B are the components of Cartesian
coordinates with implied summation for repeated indices.
Furthermore, wi is the weighting which can be determined
to achieve isotropy of fourth-order tensor of velocities and
Galilean invariance [23]. Using the Chapman–Enskog
expansion, the continuity equation and the Navier–Stokes
equations can be recovered exactly at the second-order
approximation from the LB equation of the flow field,
Eq. (1), without the additional body force term _J i, as de-
rived in [24]

oq
ot
þr�ðquÞ¼ 0 ð8Þ

oðquAÞ
ot
þrA � ðquAuBÞ¼�rA c2

s q
� �

þ mrB � ðrAquBþrBquAÞ

ð9Þ

Similarly, the convective–diffusive equation can be ob-
tained from the LB equation of the temperature field, i.e.
Eq. (2), as derived in [20,25]:

oh
ot
þ ðu � rÞh ¼ r � ðarhÞ ð10Þ

where h denotes the temperature or concentration, and is
replaced in the present study by the temperature T.
In simulating the natural convection problem, the addi-
tional buoyant body force term, _J i, can be formulated by
the Boussinesq approximation, i.e.

_J iðx; tÞ ¼ 3wi � gy � b � ½T ðx; tÞ � T1� � qðx; tÞ � ciy ð11Þ

where gy is the acceleration of gravity in the y-direction, b
is the thermal expansion coefficient and is defined by
b � �1=qrefðoq=oT ÞP based on the reference density of
the fluid qref , and ciy is the y-component of ci. Note that
Eq. (11) only describes the buoyant effect acting on the
y-direction of the lattice links. The terms qðx; tÞ and
T ðx; tÞ, which are the dimensionless local density and tem-
perature, are calculated at each lattice site using Eqs. (5)
and (7), respectively. However, the temperature difference
is normalized to the dimensionless format by setting
DT � T Boundary � T1 ¼ 1 as a constant and specifying
T1 ¼ 0 (the lowest reference temperature within the com-
putational domain), such that DT ¼ T ðx; tÞ at each lattice
site. Eq. (11) can then be simplified to

_J i ¼ 3wi � gy � b � T ðx; tÞ � qðx; tÞ � ciy ð12Þ

This body force term does not contribute to the density of
the flow but it does change the momentum of the flow as a
result of the buoyancy. Additionally, the body force term,
i.e. Eq. (12), maintains the term of local density qðx; tÞ to
prevent an over- or insufficient-variation of the local den-
sity when the local density is simplified as a fixed constant
for incompressible applications. According to previous
investigation [20], the current simple thermal LB model is
applicable to incompressible thermal flows with negligible
viscous dissipation. More details of this simplified LB
model, including the Chapman–Enskog expansion and val-
idation for natural convection problems, can be found in
[20].

To simulate the natural convection problems by LBM,
once the characteristic velocity V �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgyDTH

p� �
is deter-

mined, the kinetic viscosity ðmÞ and thermal conductivity
ðaÞ can be obtained through the relation for the Prandtl
number and Rayleigh number:

m2 ¼ V 2‘2Pr
Ra

ð13Þ

and

a ¼ m
Pr

ð14Þ

where Ra is the Rayleigh number, Pr is the Prandtl number,
and ‘ denotes the length scale according to the specific case
of the natural convection problems. Hence, the relaxation
time, sv and sD, for flow and temperature LB equations,
i.e. Eqs. (1) and (2), can be determined, while the limitation
of 0:5 < s for both relaxation times should be satisfied. It
implies that both the kinetic viscosity ðmÞ and thermal con-
ductivity ðaÞ cannot be fixed as constants in LBM simula-
tions. The same approach to determine the flow parameters
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for LBM computations in natural convection was also pro-
posed in [16–19].

The present simulations use the D2Q9 model, i.e. two-
dimensional nine-velocities model, and hence the relative
weightings for Eqs. (3), (4), (11) and (12) are given by:
wi ¼ 4=9 for jcij ¼ 0 (for the static particle), wi ¼ 1=9 for
jcij ¼ 1, and wi ¼ 1=36 for jcij ¼

ffiffiffi
2
p

. Regarding the bound-
ary conditions of the flow field, the bounce-back scheme is
applied for the no-slip solid walls. This scheme specifies the
outgoing directions of the distribution function as the
reverse of the incoming directions at the boundary sites.
Regarding the temperature field, since the local temperature
is defined as T ðx; yÞ ¼

P
igiðx; yÞ in Eq. (7) and the no-slip

condition ðux ¼ uy ¼ 0Þ is applied for all solid nodes, the
adiabatic walls can be simplified by employing the
bounce-back scheme for temperature distribution function
gi to make the ‘‘heat flux-free state” in each lattice direction
for the specific nodes applying to the adiabatic boundary
condition, i.e. _qi ¼ oT i=oxi ¼ ðgi � g�iÞ=Dx ¼ 0. Moreover,
the walls with a constant temperature can be specified by the
equilibrium distribution computed from Eq. (4).
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Fig. 1. Temperature contours for validation example of 2D square cavity with
2.2. Symmetry

At the onset of bifurcation to the secondary instability,
the periodic unsteady flow is characterized as a wave trav-
eling along the axes of the rolls alternately. This oscillatory
flow has a symmetry-breaking structure of flow. Previous
studies [6,7] utilized a discrete subgroup G of the total sym-
metry group of the system. In present study, this subgroup
is used to identify the bifurcation of the flow structure.
Subgroup G consists of four elements, i.e.:

G¼fId;S1;S2;S3g ð15Þ

where Id is the identity of the trivial symmetry group, and
the symmetries S1, S2, and S3 are given by

S1 : ðx;yÞ! ð�x;yÞ; ðux;uy ;T 0Þ! ð�ux;uy ;T 0Þ ð16Þ
S2 : ðx;yÞ! ð�xþL=2;1� yÞ; ðux;uy ;T 0Þ! ð�ux;�uy ;�T 0Þ

ð17Þ
S3 : ðx;yÞ! ðxþL=2;1� yÞ; ðux;uy ;T 0Þ! ðux;�uy ;�T 0Þ

ð18Þ
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grid 81� 81 at: (a) Ra ¼ 103, (b) Ra ¼ 104, (c) Ra ¼ 105, and (d) Ra ¼ 106.



ity 0.0008

0.0009

0.001

Ra = 1730

Fitted Curve
Computed Values

P.-H. Kao, R.-J. Yang / International Journal of Heat and Mass Transfer 50 (2007) 3315–3328 3319
where T 0 is the temperature deviation from the average
temperature over the whole domain, and is defined as:
T 0 � T ðx; yÞ � ðT Bottom�T TopÞ

2
for the simulations of Rayleigh–

Bénard convection.
In the state of primary instability, the flow has the form

of stationary rolls symmetric with respect to the full group
G, i.e. Eq. (15). However, at the bifurcation to the second-
ary instability with a symmetry-breaking structure, three
possible branches emerge with respect to which one bifur-
cating solution can be symmetric. These three branches
correspond to subgroups fId; S1g, fId; S2g, and fId; S3g,
respectively.

2.3. Frequency ratio

The present simulations define a dimensionless fre-
quency ratio to quantify the oscillatory frequency for
LBM applications. The dimensionless frequency ratio, f �,
is defined as

f � � fD

fP
¼ a � tp

H 2
ð19Þ

where fD is the reference thermal diffusive frequency, de-
fined as fD ¼ a

H2, and fP is the oscillatory frequency, i.e.
fP ¼ 1

tp
, in which tp is time of period for the oscillatory flow.

Note that fP is the oscillatory frequency of flow induced by
the thermal conduction. However, the reciprocal of the fre-
quency ratio is the ratio of the diffusive time scale to the
oscillatory time scale, i.e. f � ¼ tp

tD
. Therefore, from Eq.

(19), the frequency ratio is equal to zero for steady flows
with stationary convection since the time of period is
tp ¼ 0. Based on the definition of frequency ratio, the com-
puted value of f �, which is solved by LBM, could easily be
applied to obtain the tp for practical applications of
engineering.

3. Validations of LB model using 2D square cavity

The simple thermal LB model in present study was val-
idated by considering the case of natural convection in a
2D square cavity. In the simulations, the initial stationary
flow was heated from the left wall of the cavity, i.e.
T Left ¼ 1, while the right boundary was maintained at a
Table 1
Comparison of Nusselt numbers computed at different Rayleigh numbers
using different grids with results presented in [28]

Ra 103 104 105 106

Nu by de Vahl
Davis [28]

1.118 2.243 4.519 8.825

Nu by present LBM
Grid: 41 � 41 1.105

(1.16%)
2.251
(0.37%)

4.551
(0.71%)

8.519
(3.47%)

Grid: 81 � 81 1.110
(0.72%)

2.249
(0.27%)

4.535
(0.35%)

8.734
(1.03%)

Grid: 161 � 161 1.113
(0.45%)

2.238
(0.22%)

4.508
(0.24%)

8.776
(0.56%)
constant low temperature, i.e. T right ¼ 0. The upper and
bottom boundary walls were assigned to adiabatic bound-
ary conditions. A vertical gravitational effect was applied in
the y-direction. Regarding the flow field, the square cavity
was assumed to be closed and the no-slip boundary condi-
tion was applied to each of the four solid walls. The initial
conditions within the domain were specified as: T ðx; yÞ ¼ 0
and uxðx; yÞ ¼ uyðx; yÞ ¼ 0 with a uniform density of
qðx; yÞ ¼ 1.

In the simulations, the 2D cavity was mapped using a
square lattice, in which Dx ¼ Dy for the D2Q9 model.
The aspect ratio of the computational domain, i.e.
AR � L=H , was equal to 1. The simulations, including
the grid-independence study, were performed using several
different grid systems, i.e. 41 � 41, 81 � 81, and 161 � 161,
respectively. The Prandtl number was assumed to be a fixed
constant with a value of 0.71 and was defined as

Pr � m
a

ð20Þ

In the simulations, the Rayleigh number ðRaÞ and the Nus-
selt number ðNuÞ were estimated to investigate the instabil-
ity of the flow and the enhancement of the thermal transfer,
respectively. The Ra and Nu were defined as

Ra ¼
b � DT � gy � L3

ma
ð21Þ

and

Nu ¼ 1þ hux � T i
a � DT=L

ð22Þ

where L is the horizontal length of the closed cavity,
DT ¼ 1 is fixed and is the temperature difference between
the left and right boundaries, and h i denotes the average
value over the whole domain.

The simulations were performed at Ra ¼ 103, 104, 105,
and 106, respectively. The corresponding temperature
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Fig. 2. Maximum vertical velocity growth/decay rate at different Rayleigh
numbers for V 2 ¼ 0:085 and Pr ¼ 0:71.
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Fig. 3. Temperature and stream function contours at various Rayleigh numbers and Pr ¼ 0:71: (a1) temperature contours at Ra ¼ 5000, (a2) temperature
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contours are presented in Fig. 1. The current results are
similar to those presented in [20,26,27]. Table 1 presents
the simulated results obtained for the Nusselt number at
Rayleigh numbers of Ra = 103, 104, 105, and 106, respec-
tively, using each of three grid systems. The equivalent
Nusselt data presented in [28] are also shown in Table 1
for comparison purposes. The percentage data given in
parentheses indicate the deviation of the current simulation
results from those given in [28]. It is observed that the
results obtained using the current LB model are consistent
with those reported in [28]. Using a grid size of 81 � 81 or
161 � 161, the discrepancy between the two sets of results
is less than 1%. The maximum discrepancy is slightly larger
than 1% when the coarse grid (41 � 41) is used.

4. Simulations of Rayleigh–Bénard convection

Rayleigh–Bénard convection is a flow driven by fluid
expansion and gravity effects. In this natural convection
problem, the initially static flow is heated from the bottom
boundary, and a lower temperature is maintained at the
upper wall. Additionally, a vertical gravitational force is
applied to the y-direction of the computational domain.
As the temperature difference between upper and bottom
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boundaries is increased, the stationary conduction state
becomes unstable by any small disturbance. According to
linear stability theory, the critical wave number for Ray-
leigh–Bénard convection is ac ¼ 3:117. So that, the convec-
tive cells would be developed readily with an aspect ratio of
2p=ac ¼ 2:016. An appropriate value of aspect ratio,
AR � L=H ¼ 2, for simulations can be determined.

In the present Rayleigh–Bénard convection simulations,
the computational 2D channel was mapped by the square
lattice for D2Q9 model, comprising 81� 41 grids. The
same grid size was also applied to simulate the Rayleigh–
Bénard convection using LBM or BGK based model at
Pr = 0.71 in [17,18]. To compare the accuracy of the results
obtained by present simple LB model with those using
other LB models for the Rayleigh–Bénard convection at
Pr = 0.71, we use the same mesh size (41 � 81). The side
boundaries of the channel were assigned periodic bound-
ary conditions for both the flow and the temperature
fields. Meanwhile, the upper and bottom solid bound-
aries were assigned no-slip conditions for the flow field
and were assigned constant temperatures of T Upper ¼ 0
and T Bottom ¼ 1, respectively, for the temperature field. A
small perturbation in the form of a cosine wave with ampli-
tude of 1� 10�3 was applied to the density population.
Note that a similar treatment for perturbation was applied
to the density or to the temperature distribution functions
as presented in [17,19,29].

In the present Rayleigh–Bénard convection simulations,
the Prandtl number was defined as shown as in Eq. (20),
but the definitions of the Rayleigh number and the Nusselt
number were modified to

Ra ¼
b � DT � gy � H 3

ma
ð23Þ

and

Nu ¼ 1þ huy � T i
a � DT=H

ð24Þ

where H is the vertical height of the channel, DT ¼ 1 is
fixed and denotes the temperature difference between the
upper and bottom boundaries.

The aim of the current simulations was to identify
the oscillatory flows in 2D Rayleigh–Bénard convection.
The simulations were performed for various value of the
Prandtl number in the range of 0:71 6 Pr 6 70, i.e.
Pr = 0.71, 6, 25, and 70, respectively. Furthermore, the
Rayleigh number was limited to the range Ra 6 105. Under
these conditions, the flow does not reach the fully devel-
oped turbulence regime, but bifurcations to oscillatory
flows may occur at particular Prandtl numbers given an
appropriate Rayleigh number. Importantly, since the sim-
ple LB model was used in incompressible limit, an appro-
priate characteristic velocity of natural convection,
V �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgyDTH

p
, was specified for each Prandtl number to

ensure that incompressible conditions were achieved in
each case.
4.1. A correction procedure for threshold of primary

instability

According to linear stability theory, the primary insta-
bility of Rayleigh–Bénard convection with no-slip bound-
ary conditions occurs at a critical Rayleigh number of
Rac ¼ 1707:76 with a wave number ac ¼ 3:117 [30]. Note
that the values of Rac and ac for primary instability are
independent of the Prandtl number.

However, the fluids of LB are always compressible
with the result that it bears potential danger [18]. Further-
more, as reported in [16,17,20], for the problem of natural
convection using a thermal LBM, the characteristic veloc-
ity, V �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgyDTH

p
, must be carefully determined to ensure

that the compressible LB code can still be applied within
the incompressible regime. The incompressible condition
requires that the Mach number is Ma � U avg=cs 6 0:1,
where the average macroscopic velocity U avg can be esti-
mated by the mean characteristic velocity, i.e. U avg �ffiffiffiffiffiffiffiffiffiffiffi

V 2
mean

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgyðT mean � T LÞH

q
. Unfortunately, there is no

theoretical criterion to obtain the V value for various nat-
ural convection problems. Accordingly, before conducting
the Rayleigh–Bénard convection simulations, this study
examined the influence of the characteristic velocity ðV Þ
on the critical Rayleigh number ðRacÞ under various Pra-
ndtl numbers using this simple LB model.

To estimate the simulated critical Rayleigh number at
different Prandtl numbers, the growth rate or decay rate
of the maximum vertical velocity should be computed
using a curve fitting technique at a slightly lower or slightly
higher value of Rayleigh number than the theoretical crit-
ical Rayleigh number. In this study, Rayleigh numbers of
Ra = 1685, 1700, 1715, and 1730 were specified. An inter-
polating scheme was then applied to determine the simu-
lated critical Rayleigh number by the LB model. In
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Fig. 5. Evolution of stream function contours in quarter-period steps at Ra ¼ 50;000 and 105 for Pr ¼ 6: (a1) Ra ¼ 50; 000 at t ¼ 0, (a2) Ra ¼ 50; 000 at
t ¼ tp=4, (a3) Ra ¼ 50; 000 at t ¼ tp=2, and (a4) Ra ¼ 50; 000 at t ¼ 3tp=4; (b1) Ra ¼ 105 at t ¼ 0, (b2) Ra ¼ 105 at t ¼ tp=4, (b3) Ra ¼ 105 at t ¼ tp=2, and
(b4) Ra ¼ 105 at t ¼ 3tp=4.

3322 P.-H. Kao, R.-J. Yang / International Journal of Heat and Mass Transfer 50 (2007) 3315–3328
previous investigations, the squared value of the character-
istic velocity, i.e. V 2 ¼ bgyDTH , was specified as 0.1 in the
case of Pr ¼ 0:71 in [17], and in the case of Pr ¼ 1:0 for a
gas-kinetic BGK scheme presented in [18]. In the current
study, several values of V 2 near 0.1, i.e. from 0.1 to 0.08,
were tested for a Prandtl number of Pr ¼ 0:71. The com-
puted results indicated that the simulated critical Rayleigh
number ðRacÞ varied from 1701.03 to 1721.88 in the veloc-
ity range 0:1 6 V 2

6 0:08. For a Prandtl number of
Pr ¼ 0:71, an optimum value of V 2 was found to be 0.085
for current LB model, and the associated critical Rayleigh
number was Rac ¼ 1709:13, i.e. a deviation of 0.34% from
the theoretical value of 1707.76. Fig. 2 illustrates the max-
imum vertical velocity growth/decay rate at different Ray-
leigh numbers for the case of V 2 ¼ 0:085 and Pr ¼ 0:71. In
simulations performed at different Prandtl numbers, the
computed results for Rac were found to deviate significantly
from the theoretical value of 1707.76 if the value of V 2 was
maintained as a constant. In other words, the value of V 2

must be carefully chosen for different Prandtl numbers.
Therefore, the present simulations employed the correction
procedure to modify the value of V 2 for different Prandtl
numbers in order to satisfy the correct theoretical value
of Rac ¼ 1707:76. By specifying a criteria that the deviation
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of simulated Rac value from the theoretical Rac value
should not be no more than 1% at each Prandtl number,
it was determined that the appropriate value of V 2 were
V 2 ¼ 0:035 for Pr ¼ 6, V 2 ¼ 0:014 for Pr ¼ 25, and V 2 ¼
0:005 for Pr ¼ 70. An approximate analysis to explain this
tendency is illustrated as follows. Consider a real case of
the fixed Rayleigh number (i.e. Rac ¼ 1707:76 for primary
instability which is independent of Prandtl numbers) with
increased Prandtl number, as an example of the fluid prop-
erties for air (Pr = 0.71, mAir ¼ 1:5� 10�5 m2=s at 20 �C)
and for water (Pr = 6.0, mWater ¼ 9:8� 10�7 m2=s at
20 �C). Based on the relation in Eq. (13), the value of V 2

should be decreased as Prandtl number increasing to sat-
isfy the fixed Rayleigh number. In the other words, larger
Prandtl number requires smaller V 2 to lead a similar
incompressible effect (similar value of Mach number) at
same Rayleigh number because of the decreased kinetic
viscosity.

4.2. Results obtained at Pr = 0.71

The first 2D Rayleigh–Bénard convection simulation
considered the case of Pr ¼ 0:71 with V 2 ¼ 0:085. Fig. 3
presents the corresponding temperature and stream func-
tion contours at Ra ¼ 5000, 10,000, 50,000, and 105. Mean-
while, Fig. 4 illustrates the variation of the Nusselt number
with the Rayleigh number for Ra ¼ 2000 to 105. For com-
parison purposes, Fig. 4 also presents the simulation results
obtained by Clever and Busse [2] and those derived from
the empirical formulation Nu ¼ 1:56ðRa=RacÞ0:296. It can
be seen that the values of the Nusselt number computed
using the current LB model slightly deviate from those
presented data in [2] at higher Rayleigh numbers
ðRa P 30; 000Þ, and this conclusion by current LB model
is similar to the simulation results obtained using the other
LB models presented in [17,19] for the same Prandtl num-
ber of Pr ¼ 0:71. Fig. 3 shows that no bifurcation to
secondary instability occurs under the flow conditions con-
sidered in this particular simulation case, i.e. Ra ¼ 5000,
10,000, 50,000, 105, and Pr ¼ 0:71.

4.3. Results obtained at Pr = 6

For a Prandtl number of Pr ¼ 6, V 2 was assigned a value
of V 2 ¼ 0:035 to ensure that the simulations were restricted
to the incompressible regime. Additionally, a limitation of
Ra 6 105 was imposed to ensure numerical stability and
computational accuracy.

The nonlinear bifurcated solutions at Prandtl numbers
close to 6 have been investigated using non-Boltzmann
based numerical models in previous studies. For 2D Ray-
leigh–Bénard convection with a stress-free boundary condi-
tion, Curry et al. [3] and Zienicke et al. [7] identified a
transition from stationary convection to periodic convec-
tion at Rayleigh numbers between 30,000 and 31,000 in a
computational domain with an aspect ratio of AR ¼ 2

ffiffiffi
2
p

and a Prandtl number of Pr ¼ 6:8. A periodic state of flow
for the symmetry-breaking bifurcation from the stationary
state was found at Ra 	 59; 000 by Prat et al. [6] for the
case of convection in a domain with an aspect ratio of
AR ¼ 2 and Pr ¼ 10 with a no-slip boundary condition.
The authors also found that the profile of the stream func-
tion can be transformed into each other by applying the
symmetries, S2 and S3, with shifted-time equal to half per-
iod. Furthermore, Stella and Bucchignani [8] identified an
unsteady periodic flow at Ra ¼ 44; 150
 80 in Rayleigh–
Bénard convection at Pr ¼ 5:0 with a no-slip boundary
condition.

In the present simulations performed at Pr ¼ 6, as the
Rayleigh number was increased, a bifurcation solution
with periodic frequency was found at Ra 	 48; 000. The
simulation results showed that the flow below Ra 	
48; 000 was stationary convection, while that at higher
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Rayleigh numbers was oscillatory convection. This bifurca-
tion solution broke symmetries S2 and S3, but symmetry S1

was still maintained. The profile of the stream function
contours can be transformed into each other by applying
S2 or S3 at half period, i.e. at t ¼ 0 and t ¼ tp=2 (or at
t ¼ tp=4 and t ¼ 3tp=4Þ where tp is the time of oscillatory
period. Fig. 5 shows the evolution of the simulated stream
function contours at Ra ¼ 50; 000 and 105, respectively, in
quarter-period steps, i.e. at t ¼ 0, t ¼ tp=4, t ¼ tp=2, and
t ¼ 3tp=4. Fig. 6 shows the time history of the Nusselt num-
ber at Ra ¼ 50; 000 and 105, respectively, for the case of
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Ra ¼ 105 and Pr ¼ 25: (a) at t ¼ 0, (b) at t ¼ tp=4, (c) at t ¼ tp=2, and (d) at
t ¼ 3tp=4.
Pr ¼ 6. It is observed that the periodic time steps of
LBM ðtpÞ for Ra ¼ 50; 000 and 105 are around
tp 	 2150 � Dt, where Dt is the time interval of LBM. There-
fore, the computed frequency ratios, as defined in Eq. (19),
are obtained to be f* = 0.018 and 0.013, respectively. It is
observed that both the induced oscillatory frequency and
the amplitude of the Nusselt number are increased at
higher Rayleigh numbers. The trend is reported that the
oscillatory flow moves more quickly as the Rayleigh num-
ber increasing. Finally, from Fig. 6, the average Nusselt
numbers for Ra ¼ 50; 000 and 105 are estimated to be
Nu ¼ 4:118 and 4.998, respectively.
4.4. Results obtained at Pr = 25

For the simulations performed at Pr ¼ 25, V 2 was
assigned a value of V 2 ¼ 0:014 to ensure that the simula-
tions were within the incompressible regime. The simula-
tion results indicated a bifurcation solution with periodic
frequency at Ra 	 76; 000. This value of the Rayleigh num-
ber for the secondary instability is much higher than that
observed in the previous case at Pr ¼ 6. Fig. 7 shows the
evolution of the computed stream function contours at
Ra ¼ 105 in quarter-period steps. It is observed that the
periodic unsteady flow at Ra ¼ 105 breaks symmetries S2

and S3, but the S1 is still preserved. The streamline profile
can also be transformed each other by applying the symme-
tries S2 or S3 at half period. Fig. 8 shows the time history of
the Nusselt number at Ra ¼ 105. The periodic time and fre-
quency ratio are found to be tp 	 6400 � Dt and f � ¼ 0:012,
respectively. Additionally, the average Nusselt number is
calculated to be Nu ¼ 5:126. The value of frequency ratio
and amplitude of the Nusselt number are similar to those
observed at Pr ¼ 6 with Ra ¼ 105, and it is concluded that;
when secondary instability occurs, the effect of thermal
transfer and induced oscillatory frequency are similar for
different values of Prandtl numbers at the same value of
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Rayleigh number. Finally, comparing the results obtained
for Pr ¼ 6 and Pr ¼ 25, it is found that fluids with a higher
Prandtl number have a wider stationary convection regime
prior to bifurcation.

4.5. Results obtained at Pr = 70

For the simulations performed at Pr ¼ 70, a value of
V 2 ¼ 0:005 was chosen to satisfy the incompressible condi-
tion. The simulation results indicated that no bifurcation to
the oscillatory flow occurs at Pr ¼ 70 with Ra 6 105, i.e.
only stationary convection takes place. Fig. 9 shows the
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Fig. 9. Temperature and stream function contours at various Rayleigh numbe
contours at Ra ¼ 10; 000, (a3) temperature contours at Ra ¼ 50; 000, and (a
Ra ¼ 5000, (b2) stream function contours at Ra ¼ 10; 000, (b3) stream function
stationary Rayleigh–Bénard convection at Ra = 5000,
10,000, 50,000, and 105, respectively. Comparing the simu-
lation results obtained for Pr ¼ 0:71 and 70, as shown in
Figs. 3 and 9 sequentially, it is observed that neither sets
of results indicate bifurcation to secondary instability.
However, the stream function profiles and temperature
contours at these two Prandtl numbers are very different.
For the higher Prandtl number, i.e. Pr ¼ 70, the flow
momentum transports much faster than the thermal trans-
fer, with the results that the streamline profile of the rolls is
less inclined with a smaller velocity variation, as shown in
Fig. 10, and a broader center of the rolls (cells).
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4.6. Relationship between Nusselt number and

Rayleigh number

In natural convection, the Nusselt number is a function
of the Rayleigh number, the Prandtl number, and the
aspect ratio. However, in the present simulations, the 2D
Rayleigh–Bénard convection take place in a channel with
an infinite horizontal length, such that a periodic boundary
condition is imposed on the side boundaries. Therefore, the
influence of the aspect ratio on the Nusselt number can be
neglected.

Previous experimental and numerical investigations of
the Nusselt number in Rayleigh–Bénard convection
showed that the Nusselt number and the Rayleigh number
are related by a power law: Nu / Rar, in which the power
value r varies widely in the range of 0.20–0.386, but gener-
ally has a value of slightly less than 0.3. Fig. 11 plots the
variation of the Nusselt number with the Rayleigh number
in the Prandtl number and Rayleigh number ranges consid-
ered in the present simulations, i.e. 0:71 6 Pr 6 70 and
Ra 6 105. It is apparent that the Nusselt number is rela-
tively insensitive to the Prandtl number in the present sim-
ulations. Fig. 11 also plots the best-fitted curve obtained
using the power value r ¼ 2=7 � 0:286 for the near turbu-
lence regime of Rayleigh–Bénard convection. It is observed
that the Nusselt numbers computed using the current LB
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model slightly deviate from the results by Clever and Busse
[2] at higher values of the Rayleigh number. Similar results
are obtained using others LB models to simulate the Ray-
leigh–Bénard convection [16–19]. For the incompressible
limit, the Mach number ðMa � U avg=csÞ should be small.
It requires that the characteristic velocity ðV Þ, which is a
function of temperature difference ðDT ¼ T H � T LÞ, be

small enough ðU avg �
ffiffiffiffiffiffiffiffiffiffiffi
V 2

mean

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgyðT mean � T LÞH

q
Þ. In

the buoyancy force, the mean temperature ðT meanÞ is taken
as the reference temperature. Therefore, the LBM usually
requires the smaller temperature difference. In present
study, the Mach number is estimated by Ma ¼ huyi=cs at
Ra ¼ 105 and Ra ¼ 104 respectively in the range of
0:71 6 Pr 6 70. The results exhibited that the Mach num-
bers, which are in the order around 10�3, become larger
at higher Rayleigh number ðRa ¼ 105Þ than those (Ma) at
Ra = 104. The compressible effects are expected to exhibit
in the flow field at higher Rayleigh number in Rayleigh–
Bénard convection problems. Hence, the simulated results
by presented LB model would be a little bit away from
the experimental data.
5. Conclusions

This study performed a series of simulations of 2D Ray-
leigh–Bénard convection in the Prandtl number range
0:71 6 Pr 6 70 and at Rayleigh numbers of Ra 6 105 using
a simple thermal LB model which neglects viscous thermal
dissipation. In the simulations, the characteristic velocity V

was carefully chosen for each Prandtl number using a cor-
rection procedure, as exhibited in Section 4.1, to ensure
that the compressible LB method satisfies the incompress-
ible limit. The simulation results have shown that in 2D
Rayleigh–Bénard convection, bifurcation to secondary
instability takes place at certain Prandtl numbers with an
appropriate Rayleigh number, namely Ra 	 48;000 for
Pr ¼ 6 and Ra 	 76; 000 for Pr ¼ 25. However, the bifurca-
tions are not observed for Prandtl numbers of Pr ¼ 0:71
and Pr ¼ 70. Bifurcations with a symmetry-breaking flow
structure with single-frequency period oscillation have been
observed. These bifurcation solutions are strongly depen-
dent on fluid properties (i.e. the Prandtl numbers), and
these simulations results are in good qualitative agreement
with those identified experimentally by Krishnamurti [5]
and numerically by Prat [6].

The employed LB model is very simple to simulate the
problems of Rayleigh–Bénard instability. The present
study provides more details of the Rayleigh–Bénard insta-
bility from threshold of primary instability to periodic
oscillatory regime (secondary instability) within the range
of 0.71 < Pr < 70. The simulation results confirm the suit-
ability of the current simplified LB model for simulating
the bifurcation to secondary instability near the turbulent
regime in the 2D Rayleigh–Bénard convection problem
while the compressible effect of the LB model is taken into
account. Unfortunately, there is no available criterion to
choose the appropriated V value presented previously in
LBM for natural convection simulations. A further study
of theoretical formulation based on the kinetic theory is
essential to investigate the instability problem of natural
convection, and this is our current task.

The solutions for the Nusselt numbers computed using
the current LB model slightly deviate from the results by
Clever and Busse [2] at higher values of the Rayleigh num-
ber, i.e. Ra P 30; 000. The information for incompressible
limit at higher Rayleigh number was provided in Section
4.6.

Furthermore, flow with two-frequency quasi-periodic
oscillation has not been observed in present simulations.
To overcome the drawbacks or difficulties of the present
LB model for simulating flows with higher Rayleigh num-
bers or in the fully turbulent regime, the future studies to
develop a robust thermal LB model which takes into
account the effect of viscous thermal dissipation and
applies an appropriated turbulent model are required.
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